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Moving contact lines are implemented in a volume-of-fluid scheme with piecewise
linear interface construction. Interfacial tension is treated as a continuous body force,
computed from numerical derivatives of a smoothed volume-of-fluid function. Two
methods for implementing the contact angle condition are investigated. The first
extrapolates the volume-of-fluid function beyond the flow domain, on the basis of
the condition that its gradient is perpendicular to the interface and that the normal
to the interface at the wall is determined by the contact angle. The second method
treats the problem as a three-phase situation and mimics the classical argument of
Young. It is found that the latter approach introduces an artificial localized flow, and
the extrapolation method is preferable. Slip is a crucial factor in the spreading of
contact lines; the numerical method introduces slip at the discrete level, effectively
introducing a slip length on the order of the mesh size.c© 2001 Academic Press
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1. INTRODUCTION

Flows involving fluid interfaces arise in a multitude of applications, including water
waves, lubricated pipeline transport, manufacturing of multilayer films, and fibers [9]. The
principal question in many of these flows is how the two fluids arrange themselves, and
there are many situations where the topology of the fluid interface changes during the
flow. The volume-of-fluid (VOF) method has become a preferred choice to deal with such
situations, because it requires noa priori assumptions on the nature of the fluid interface,
and, therefore, no special procedures are needed to handle changes in the topology of the
interface, for instance, in the breakup of drops [14].

Over the past few years, the authors have developed the code SURFER++, which expands
on the SURFER code of Li and Zaleski [11]. The method employs a VOF scheme on a
MAC finite difference grid, with a continuous surface stress algorithm for the surface
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tension force. We refer to [11]–[14] and to the following section of this paper for specifics.
Until now, however, the code did not allow for contact lines. Contact lines are an essential
part of many applications involving interfacial evolution. An example is the encapsulation
phenomenon in pipe flows. Contact lines have been implemented in earlier VOF codes
(see e.g. [10]), but we are not aware of a systematic evaluation of these codes in situations
involving contact lines. In this article, we present a formulation of the numerical scheme
together with performance tests. The main features are elucidated for the two-dimensional
case, and the extension to three dimensions is straightforward. The test problems have been
chosen as simply as possible while at the same time highlighting the performance of the
essential component parts of the code.

The VOF method is based on a “volume-of-fluid function” which gives the volume
fraction of one of the fluids in each cell of the finite difference grid. Interfacial tension
forces are computed as a body force, using numerical derivatives of the volume-of-fluid
function (or a “smoothed” volume-of-fluid function). To compute surface tension forces
near the boundary, we need to define the volume-of-fluid function outside the flow domain.
We shall explore two methods for doing this. The first of these is an extrapolation method,
which is based on the condition that the gradient of the volume-of-fluid function is normal
to the interface, and the interface normal at the boundary is determined by the prescribed
contact angle. By using this condition, we can extrapolate the volume-of-fluid function
beyond the flow domain. This is a generalization of the approach that is described in [10]
for a lower order version of the method. The second method is based on treating the contact
region as a three-phase problem, where each of the fluids and the solids have a volume-
of-fluid function associated with them. We can then compute a surface tension force from
each of the three volume-of-fluid functions, and the contact angle is determined by the
equilibrium of the surface tension forces on the three interfaces as in the classical argument
of Young.

As is well-known, an infinite force is required to cause a contact line to move. This
is a paradox, since the force provided by surface tension is finite and, on the other hand,
it is believed to be the force which is responsible for moving the contact line. In con-
sidering moving contact line problems, it is therefore important to include slip (see for
instance, [3, 4, 7, 8, 15, 18]). Moreover, the observed contact angle in a moving con-
tact line is generally not equal to the static contact angle; in addition, the macroscopic
contact angle is different from the actual contact angle at the wall, and determining the
relationship is a complicated problem of matched asymptotics. The magnitude of slip can
be quantified as a length scale, which is known as the slip length. Results in the litera-
ture [3, 4, 7, 8, 15] indicate that the magnitude of this slip length is the most essential
factor in contact line spreading, while the details of the slip law have little effect on the
overall flow. In numerical simulations, the physics of the problem is only resolved to the
scale of the mesh, and we can expect an effective slip length on the order of the mesh
size.

In Section 2, the governing equations are detailed, and novel aspects of our numerical
method are described. An unforeseen issue was that mass conservation became a major
problem. The version of the PLIC advection scheme for the interface used in the previous
version of our code, as described in [12], is not mass conserving. This caused no problems
in our earlier simulations, where errors in mass conservation were minor. However, the
singular velocity field at contact lines leads to much larger errors which have a major effect
on mass conservation, and we were forced to modify the scheme to make it mass conserving
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in order to avoid unacceptable errors. The second major change in the code is, of course,
the treatment of the surface tension force near the boundary.

Section 3 describes the results of our computations. All our calculations are in two
dimensions. We first consider a model problem for a circular drop on a flat surface. The
initial contact angle is not the correct one, causing the drop to spread. We compare our two
methods of implementing the contact angle and conclude that the extrapolation method is
preferable over the three-phase method, because the latter method causes a strong localized
flow near the contact point which persists even after equilibrium is reached. We also assess
the effect of slip on the spreading of the contact line. Explicitly imposed slip is found
to increase the speed of contact line spreading, but even in the absence of explicit slip,
there is effective slip on the scale of the mesh. We find a contact line speed which is
roughly inversely proportional to the logarithm of the mesh size. This is in qualitative
agreement with the asymptotic study of [8], which predicts a contact line speed of the form
1/(a− b ln λ), whereλ is a slip length, anda andb depend on the drop radius and on the
difference between the actual and the equilibrium contact angle. In our computations,
the mesh size effectively takes over the role of the slip length. “Correct” results would
therefore require a mesh refinement down to the level of the true slip length; clearly this
requires adaptive meshes, which our code does not currently have. We also consider the
effect of inertia and the effect of an imposed shear flow on the deformation of the drop.

The last problem we consider is that of a rising drop approaching the top. We might
expect the drop to “hit” the top wall and then spread. Indeed, some prior studies of the
problem [5, 6] start with an initial condition where a spherical drop is already touching the
wall. For our computations, the Reynolds number is considerably lower than in [5, 6]. We
find that the drop flattens out as it approaches the top wall and the point closest to the wall
is actually not in the center (this behavior is also observed in [16]). Moreover, the impact
occurs at a time which increases with mesh refinement. We interpret this to mean that the
drop actually does not reach the wall until microscopic effects, e.g. van der Waals forces,
become significant.

2. NUMERICAL METHOD

2.1. The Equations of Motion

The two-fluid flow is modeled with the Navier–Stokes equation

ρ

(
∂u
∂t
+ (u · ∇)u

)
= −∇ p+∇ · (µS)+ F, (1)

whereρ is the density,µ the viscosity,S the rate of strain tensor

Si j = 1

2

(
∂u j

∂xi
+ ∂ui

∂xj

)
,

and F the source term for the momentum equation. In our calculations, the body force
F includes the gravity and interfacial tension force. The velocity fieldu is subject to the
incompressibility constraint

∇ · u = 0. (2)
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The two fluids are immiscible, and named fluids 1 and 2. Density and viscosity are constant
in each phase but may be discontinuous at the interface. We use a volume fraction fieldC
to represent and track the interface which is transported by the velocity fieldu:

∂C

∂t
+ u · ∇C = 0. (3)

This equation allows for the calculation of density and viscosity. In fact, the average values
of density and viscosity are interpolated by the formulas

ρ = Cρ1+ (1− C)ρ2, (4)

µ = Cµ1+ (1− C)µ2. (5)

2.2. Numerical Discretization

The basic scheme of the numerical discretization is a finite difference method, in which
the computational domain is meshed by a rectangular grid. Nodal values of the volume
fractionC and the pressurep are defined at the center of each rectangle, nodal values of
the horizontal velocity are defined at the midpoints of the vertical sides, and nodal values
of the vertical velocity are defined at the midpoints of the horizontal sides.

At each time step, the algorithm consists of four basic components:

1. The interface position, i.e., the volume fractionC, is updated.
2. A surface tension force is computed.
3. A projection method is used for the Navier–Stokes solver. An intermediate velocity is

computed by using the momentum equation without the pressure term. This intermediate
velocity is not divergence free.

4. The pressure field is computed to yield a divergence free velocity field.

It is primarily in the first two steps where we had to make changes to the algorithm to
accommodate moving contact lines.

2.3. Updating the Interface Position

The updating of the interface is based on piecewise linear interface construction (PLIC).
The prior version of the PLIC scheme works as follows: in each rectangular cell in which
C is not equal to 0 or 1, compute a direction normal to the interface using the gradient of
C via n = ∇C/|∇C|. Then the interface within the cell is given by a straight line which
has normal vectorn and divides the cell according to the volume fractionC. Thus the
domain occupied by each fluid within the cell is a polygon. We now move this polygon
by moving its corners by the amount of velocity times time step1t . For this purpose, we
determine velocities at the corners of each rectangular cell by linear interpolation from the
nodal values, and we determine velocities at the points where the interface intersects the
cell boundary by linear interpolation from these corner values. By computing the areas of
the intersection of the updated polygon with the original cell and with neighboring cells,
we can determine how much fluid has moved into each neighboring cell. These values are
then used to update the color function. To simplify programming, separate updates were
used for the motion in thex-direction and in they-direction.
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The first modification we make to this scheme is to change the definition of the interface
normal in cells adjacent to the boundary: instead of determiningn from the gradient ofC,
we determine it from the prescribed contact angle.

A larger and more crucial modification results from the issue of mass conservation. As
described above, the PLIC scheme does not conserve mass. In prior computations without
contact lines, the errors in mass conservation were small, but, as computations reported
below will show, the rapidly varying velocities near the singularity at the moving contact line
lead to errors which, although they do tend to zero with mesh refinement, are unacceptably
large. This caused us to upgrade the PLIC scheme to PLIC+, in a fashion which enforces
mass conservation.

First, we change the advection scheme to conserve the area of each cell. In order to
achieve this, we must change the way in which corner velocities are interpolated. Let (i, j )
denote the index of a cell. Then the nodal values of the horizontal velocity areui+1/2, j at
the midpoint of the right boundary andui−1/2, j at the midpoint of the left boundary. In the
original PLIC scheme, the velocities at the upper right and lower right corner are determined
as follows:

ui+1/2, j+1/2 = 1

2

(
ui+1/2, j+1+ ui+1/2, j

)
,

ui+1/2, j−1/2 = 1

2

(
ui+1/2, j−1+ ui+1/2, j

)
. (6)

If we now move the corners of the cell, the volume of the cell changes by

1

4
1t1y

(
ui+1/2, j+1+ 2ui+1/2, j + ui+1/2, j−1− ui−1/2, j+1− 2ui−1/2, j + ui−1/2, j−1

)
. (7)

We changed (6) to

ui+1/2, j+1/2 = 1

4

(
ui+1/2, j+1+ 4ui+1/2, j − ui+1/2, j−1

)
,

ui+1/2, j−1/2 = 1

4

(
ui+1/2, j−1+ 4ui+1/2, j − ui+1/2, j+1

)
. (8)

This is accurate to the same order, but the effect is that the change in the volume of the cell
is now

1t1y
(
ui+1/2, j − ui−1/2, j

)
. (9)

We follow the analogous procedure for advection in they-direction, the change in the
volume of the cell is

1t1x
(
vi, j+1/2− vi, j−1/2

)
. (10)

We note that the discrete version of the divergence condition is precisely that the sum of the
terms (9) and (10) is zero. In our advection scheme, we first compute an updateCx, which
is obtained by advecting only in thex-direction and then an updateCy, which is obtained
by updating only in they-direction. The new value ofC is then found asCx + Cy − C.

Although the scheme now conserves the volume of each cell as a whole, it still need
not conserve separately the volumes of fluid 1 and 2. This is because the velocity at points
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FIG. 1. Lagrangian method during advection step. (a) Shaded polygon represents part occupied by the fluid
in the central cell. (b) Contribution of this part to new volume fraction field after advection.

where the interface intersects cell boundaries is still found by linear interpolation, and no
divergence constraint has been imposed on these interpolated values. We force conservation
by following the following procedure:

1. First, we advect in thex-direction. If the Courant stability condition is satisfied,
fluid from cell (i, j ) will end up in cells (i − 1, j ), (i, j ) and (i + 1, j ) (see Fig. 1). Let
VOF1, VOF2, andVOF3 be the amounts of fluid 1 in cells (i − 1, j ), (i, j ) and (i + 1, j ),
respectively (measured in units of the cell size1x1y). Since thex component of the velocity
by itself is not divergence free, it is generally not true thatVOF1+ VOF2+ VOF3 =
c(i, j ). Let EFAC be the “expansion factor”

EFAC = (VOF1+ VOF2+ VOF3)/c(i, j ). (11)

2. Next, we advect in they-direction. LetVOF4, VOF5, andVOF6 be the amounts of
fluid 1 from cell (i, j ) which end up in cells (i, j − 1), (i, j ) and (i, j + 1), respectively. We
enforce mass conservation by adjustingVOF4, VOF5, andVOF6 to new valuesVOF4′,
VOF5′, andVOF6′ such that

VOF4′ + VOF5′ + VOF6′ = c(i, j ) ∗ (2− EFAC). (12)

Ordinarily, this is done by adjusting each of the valuesVOF4,VOF5, andVOF6 by the same
multiplicative factor. An exception is provided, however, if this would make the amount of
fluid 1 transported from one cell to the next larger than the total volume-of-fluid transported
between the same cells. If, for instance,VOF4′ exceeds this limit, we do not adjustVOF4
and distribute the excess only amongVOF5 andVOF6.

While the new PLIC+ scheme enforces mass conservation, a drawback is that the values
of the VOF function are no longer generated by the motion of a smooth interface (the
correction applied in step 2 above is not described in terms of interface motion). We believe
that this aspect of the algorithm is responsible for the production of small “flotsam and
jetsam” (cells in whichC is almost one but not exactly one) which is apparent in some of
our figures. We found that this improved with mesh refinement and, in any case, did not
have any significant effect on the rest of the computations.
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2.4. Continuous Surface Force

The code approximates surface tension by a continuous body force, which is given as the
divergence of a surface stress [1, 17]:

TS = (I − nnT )σ |∇C|, n = ∇C/|∇C|. (13)

To implement this formulation, the volume fractionC in this formula is replaced by a
smoothed function obtained by convolution with a mollifier. To calculate the smoothed
volume fraction and to evaluate the gradient ofC near the boundary, it is necessary to define
values ofC outside the computational region. We have tested two different procedures to
do this.

The first procedure is based on extrapolation, using the condition that the direction ofn
at the boundary should be in accordance with the prescribed contact angle. For instance,
if the first row of cells inside the computational region is indexed byj = 2, we use the
condition that the vector(

C(i + 1, 2)− C(i − 1, 2)

21x
,

C(i, 2)− C(i, 1)

1y

)
(14)

should be in the direction ofn to determineC(i, 1). This then allows us to define∇C at the
boundary. If smoothing is used, we apply it iteratively; that is, we use a procedure replacing
C by an average involving only neighboring cells and apply this smoothing step several
times if we desire. OnceC(i, 1) is defined by (14), we can calculate the “once smoothed”
function for j = 2. Then we repeat the use of (14) to extrapolate the smoothed function to
j = 1.

The second method mimics the classical argument of Young. We treat the flow as a
three-phase system where each phase has its own surface tension force and surface tension
coefficient. Fluid 1 has volume fractionC inside the flow domain and zero outside the
domain, fluid 2 has volume fraction 1− C inside the flow domain and zero outside, and
the solid has volume fraction 0 inside the flow domian and 1 outside. Hence, each of the
three phases has a volume fraction defined everywhere. To each of these volume fraction
functions, we associate a continuous surface stress and a surface tension coefficient (σ1 for
fluid 1, σ2 for fluid 2, andσ3 for the solid). The surface tension between the two fluids is
then given byσ1+ σ2 and the contact angle is determined by Young’s equation

(σ1+ σ2) cosθ = σ1− σ2. (15)

2.5. Solution of the Momentum Equation

The solution of the momentum equation basically follows the method used in prior work.
The simultaneous solution of the continuity and momentum equations is computationally
expensive. An efficient approximation is provided by a projection method [2], which pro-
ceeds as follows. Given the physical quantities at time leveln, the first step is to calculate
an intermediate velocityu∗ which satisfies

u∗ − un

1t
= −un · ∇un + 1

ρ
(∇ · (µS)+ F)n. (16)
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The expressionu∗ is not, in general, divergence-free. We then correctu∗ by the pressure
term,

un+1− u∗

1t
= −∇ p

ρ
, (17)

whereun+1 at time leveln+ 1 satisfies

∇ · un+1 = 0. (18)

The key idea of this projection method is to substitute Eq. (17) into Eq. (18), to obtain a
Poisson equation for the pressure

∇ ·
(∇ p

ρ

)
= ∇ · u

∗

1t
. (19)

The solution of this equation is the most time-consuming part of the Navier–Stokes solver,
and an efficient solution is crucial for the performance of the whole method. Our code
SURFER++ uses the multigrid method. The basic idea of the multigrid method is to combine
two complementary procedures: one basic iterative method to reduce the high frequency
error, and one coarse grid correction step to eliminate the low frequency error. We choose
a two-color Gauss–Seidel iterative method because it breaks the dependence between the
variables and therefore allows for parallelization of the scheme. We use a Galerkin method
to provide a good coarse grid correction.

For determining the intermediate velocityu∗, we use a semi-implicit method as follows:

u∗ − un

1t
= 1

ρn

∂

∂x
(2µnu∗x)+

1

ρn

∂

∂y

(
µnu∗y + µnvn

x

)− unun
x − vnun

y +
1

ρn
Fn,

(20)
v∗ − vn

1t
= 1

ρn

∂

∂x

(
µnun

y + µnv∗x
)+ 1

ρn

∂

∂y
(2µnv∗y)− unvn

x − vnvn
y +

1

ρn
Gn.

Hereu = (u, v) andF = (F,G).
The implementation of boundary conditions at walls had to be changed from the earlier

version of our code. If the bottom boundary of the computational domain is between cells
j = 1 and j = 2, then the no slip boundary condition is discretized asu(i, 1) = −u(i, 2).
In our original code, this was enforced in an explicit step; effectively we setu∗(i, 1) =
−un(i, 2). We found that the error associated with the “time delay” thus introduced into
the boundary condition led to inaccuracies at the moving contact line which gave invalid
results unless very small time steps were chosen. For this reason, we have changed the
implementation of the no-slip condition to an implicit one:u∗(i, 1) = −u∗(i, 2).

3. RESULTS AND DISCUSSION

3.1. Mass Conservation

The flow domain is the square [0, 1]× [0, 1], with periodic boundary conditions in the
x-direction and no slip boundary conditions aty = 0 andy = 1. Figure 2(a) shows the
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FIG. 2. Computed drop shapes: (a) Initial configuration, (b)t = 1, original PLIC scheme, 64× 64, (c)t = 1,
mass-conserving PLIC scheme, 64× 64, (d)t = 1, original PLIC scheme, 128× 128.

initial configuration of the drop. In the initial configuration, fluid 1 occupies the circle of
radiusa = 0.2 centered at (0.5, 0.85) and the fluid is at rest. The viscosity isµ = 0.001
in both fluids, the density of both fluids isρ = 0.01, the interfacial tension isσ = 0.03,
and the contact angle (i.e., the angle between the wall and the interface within fluid 1) is
arccos(1/3) = 70.53◦. The parameters are not meant to correspond to any specific liquid.
What is important are dimensionless quantities. We can form a capillary number,

Ca= µU

σ
, (21)

and a Reynolds number

R= ρUa

µ
, (22)

whereU is a velocity scale of the flow. From our computations reported below, we find that
the maximum velocity is quite close to 1, leading to a capillary number of about 0.03 and
a Reynolds number of about 2.

The initial configuration is in equilibrium except for the contact angle. We compute the
spreading of the drop up to timet = 1, using a time step of 5∗ 10−4 (the configuration
attained att = 1 is actually close to the final configuration). The surface tension stress is
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TABLE I

Volumes of Fluid 1 at t = 0, t = 1 for Three Mesh Sizes

Grid Original volume Volume att = 1 Percent change

64× 64 477.583 450.732 −5.62
128× 128 1910.333 1855.439 −2.87
256× 256 7641.332 7532.668 −1.42

calculated using the extrapolation method. Table I shows the initial volume of fluid 1 and
the volume att = 1 (measured in units of grid squares) for various mesh sizes when the
original PLIC scheme is used for interface advection.

In contrast, the mass-conserving PLIC+ scheme described in the previous section yields
a final volume of 477.586 for the 64× 64 mesh. Clearly, the size of mass conservation errors
for the original PLIC scheme is unacceptable for realistic mesh sizes, although the error
does decrease linearly with the mesh size.

Figure 2(b) shows the configuration att = 1 computed on the 64× 64 mesh with the
original PLIC scheme, and Figure 2(c) shows the configuration att = 1 computed on the
same mesh with the mass-conserving PLIC+ scheme. Apart from conserving mass, we
find a much smoother interface near the contact point (see the enlargement of Fig. 3).
Otherwise, the two figures are quite similar. For comparison, Fig. 2(d) shows the final
interface computed with the original PLIC scheme on a refined 128× 128 grid.

3.2. Continuous Surface Force Algorithm

Figures 4 and 5 show a comparison of calculated interface shapes when the extrapolation
method is used and when the three-phase method is used. The problem setting is described
in the preceding subsection and we show interface positions fort = 0, 0.05, 0.1, 0.15, 0.2,
and 2. The results from the two methods agree quite well with each other. The position
of the contact point on the wall fort = 2 is atx = 0.844 with the extrapolation method
andx = 0.849 with the three-phase method. This compares well with the expected value
of 0.836 which would be obtained for a drop with the given volume and contact angle (the
final equilibrium has been reached att = 2).

FIG. 3. Interface near contact point att = 1, 64× 64 mesh: (a) original PLIC scheme, (b) mass-conserving
PLIC+ scheme.
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FIG. 4. Comparison of extrapolation and three-phase method (1).

Figure 6 compares velocity fields fort = 0.1 andt = 2. The velocity field fort = 0.1
consists essentially of two counter-rotating vortices which move fluid outward along the
top wall and upward along the centerline. The maximum magnitude of the velocity

max(max|u|,max|v|) (23)

is 0.997 for the extrapolation method and 1.013 for the three-phase method. The velocity
fields fort = 2 differ substantially. With the extrapolation method, the velocity is very small,
with a maximum of 0.025. With the three-phase method, we get a strong local flow near
the contact points. The maximum of the velocity is 0.294. We have magnified the flow near
the contact point in Fig. 7. The flow is toward the contact point on the walls and the interface
and away from the contact point in the interior of each fluid. This flow is driven by the
continuous surface force; it attempts to relieve the curvature singularity at the contact point.
The difference is that with the extrapolation method, the interface is continued outside the
flow region so that there is no curvature singularity. With the three-phase method, on the
other hand, the interface is continued along the wall and there is a discontinuity in the slope.
There is a basic inconsistency between using a continuous surface force and a sharp interface
which is inherent in our numerical method. The persistence of a flow near the contact point
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FIG. 5. Comparison of extrapolation and three-phase method (2).

is a result of this inconsistency: the continuous surface force attempts to diffuse the interface
to relieve the curvature singularity, but the interface tracking algorithm does not allow the
interface to diffuse. Consequently, a static equilibrium is not reached. Our basic conclusion
is therefore that the extrapolation method should be preferred.

3.3. Role of Slip

Since moving contact lines cause a force singularity, it is generally believed that slip
occurs in the neighborhood of the contact line. The simplest law for slip is the Navier slip
condition which has the form

u = β ∂u

∂y
. (24)

The slip coefficientβ has the dimension of length, which can be interpreted as the distance
from the boundary where a linearly extrapolated velocity profile would reach 0. In most
applications, this slip length is much smaller than any realistic mesh size for numerical
simulation. Numerically, we can impose a slip length on the order of the mesh size; we
choseβ = 1y/2, since this is particularly easy to implement. Figures 8 and 9 show a
comparison of results with slip versus no slip. These results are on a 128× 128 mesh with
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FIG. 6. Velocity fields with extrapolation and three-phase method.

a time step of 10−4. Slip leads to a decrease in the viscous force which resists the motion
of the contact line; consequently, the motion of the contact line speeds up.

Table II shows the position of the contact line as a function of time. We also calculated
the position att = 0.05 with a 512× 512 mesh, the result is 0.672 for no slip and 0.688 for
slip. Clearly, mesh refinement leads to a more slowly moving contact line, in both cases.

FIG. 7. Local velocity near contact line,t = 2.
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FIG. 8. Interface position with slip and no-slip (1).

This behavior is to be expected. Note that, without slip, it takes an infinite force to move
the contact line, while the capillary force driving the flow is finite. If no-slip were strictly
enforced, the contact line would be unable to move. Even in the “no-slip” case, our algorithm
actually introduces slip on the scale of the mesh. The analysis of Hocking and Rivers [8]
predicts a contact line speed which behaves likea/(b− ln λ), whereλ is a slip length and
a andb depend on the drop radius and on the difference between the actual contact angle
and the static equilibrium contact angle. We do not know how the contact angle for our

TABLE II

Position of Contact Line for 128× 128 and 256× 256 Mesh vs Time

t No-slip, 128× 128 No-slip, 256× 256 Slip, 128× 128 Slip, 256× 256

0 0.633 0.633 0.633 0.633
0.05 0.688 0.681 0.704 0.698
0.1 0.728 0.718 0.750 0.740
0.15 0.762 0.750 0.788 0.776
0.2 0.789 0.776 0.817 0.804
0.25 0.806 0.794 0.829 0.819
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FIG. 9. Interface position with slip and no-slip (2).

problem evolves with time, so we cannot predicta andb as a function oft , but we can
expect that, for our numerical simulations,λ is of orderh. Our results are consistent with
such a prediction. Whether or not we explicitly introduce slip into the boundary condition
merely changes the values ofa andb.

Since we cannot refine the mesh to a degree in which the true slip length will be captured
(our code does not currently include any capability for adaptive mesh refinement), our
results will always overpredict the propagation speed of the contact line (because –lnλ is
smaller than it should be). This is a fundamental problem independent of the choice of the
numerical method. Of course, the problem selected here, where the mismatch of the contact
angle is the only effect driving the flow, is a “bad” one in which the size of the slip length is
more crucial for the overall flow than in more typical applications. Below, we shall examine
a drop stretched by shear, where the primary effect driving the flow is the imposed shear,
and contact line motion is a secondary effect. We shall see there that the contact line motion
is also mesh dependent, but the overall flow is much less dependent on it.

3.4. Role of Inertia

To show the role of inertia, we increase the density by a factor 10 to 0.1. All other
parameters are as before (the mesh is 128× 128 with a time step of 5∗ 10−4). Figures 10
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FIG. 10. Interface position withρ = 0.1 (1).

and 11 show the evolution of the interface. Compared to the previous case, we see a slower
startup of the motion, followed by an oscillation toward equilibrium. During the transient
phase, the drop becomes flatter than before, and the contact line position overshoots the
equilibrium position. It then retracts and slightly overshoots again. This exemplifies the role
of inertia in adding a resistance to the evolution.

3.5. Stretching of a Drop Subjected to Shear

We now impose a shear on the flow by moving the upper boundary at unit speed. The
fluid parameters and the initial configuration of the drop are as in Section 3.1 above. The
computed interface shapes on a 256× 256 mesh and with a time step of 5∗ 10−4 are shown
in Fig. 12. The drop is stretched out by the shear in the flow, and the contact line moves by
very little (relative to the moving plate). The contact line position depends slightly on mesh
refinement, as illustrated in Table III, which shows the position of the right and left contact
points as a function of time for two different mesh sizes. In this flow, contact line motion
has a minor effect on the overall flow, and the rough mesh is successful in capturing the
dynamics.
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FIG. 11. Interface position withρ = 0.1 (2).

3.6. Rising Drop

We now study a drop of one liquid surrounded by another, and rising under gravity. The
fluid parameters are as in Section 3.1, except that we now have a density difference between
the two liquids. The density in the drop is 0.01, while the density of the surrounding liquid is
0.02. The initial configuration is a circular drop of radius 0.2 centered at a height of 0.75 (as
in all the calculations reported here, we are talking about a two-dimensional “drop”). The
gravity constant isg = 50. This choice is motivated by the balance of gravity and surface
tension, which we would like to be of comparable importance. The relevant dimensionless
quantity is the Bond number

B = (δρ)ga2

σ
= 2/3. (25)

TABLE III

Position of the Right and Left Contact Points for 256× 256 and 64× 64 Mesh

t right, 256× 256 left, 256× 256 right, 64× 64 left, 64× 64

0 0.633 0.367 0.633 0.367
0.1 0.735 0.465 0.739 0.459
0.2 0.837 0.563 0.841 0.558
0.3 0.939 0.663 0.942 0.656
0.4 0.040 0.762 0.043 0.754
1.0 0.647 0.361 0.647 0.349
2.0 0.651 0.364 0.649 0.345
3.0 0.651 0.367 0.645 0.343



260 RENARDY, RENARDY, AND LI

FIG. 12. Drop stretched by shear.

Previous studies of “impact” [5, 6] begin with a spherical drop which is already touching
the wall and then spreading. In contrast, our results show that the drop does not reach the
top wall in spherical shape, and actually it does not reach it at all. We did calculations on a
128× 128, 256× 256, and 512× 512 mesh. Figure 13 shows interface shapes computed
on the 256× 256 mesh.

While the drop is rising, it flattens out, and eventually the points closest to the wall are
not at the center. Then the drop appears to reach the top at a time between 0.68 and 0.7.
This merging depends on the scale of the mesh. With the 128× 128 mesh, the time in
which the drop reaches the top is between 0.34 and 0.36, and with the 512× 512 the drop
is still separated from the wall att = 1. Figure 14 shows drop shapes computed with the
512× 512 mesh.

The shape of the drop has almost equilibrated betweent = 0.7 andt = 1.0, but the drop
slowly gets closer to the top wall. The minimum distance is 0.0100 att = 0.7 and 0.0074
at t = 1.0, which is indicative of a proportionality to 1/t . Eventually, the distance is on
the scale of the mesh, and a numerical “interface reconnection” occurs. In reality, such an
interface reconnection will occur when the distance reaches scales at which microscopic
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FIG. 13. Rising drop, 256× 256 mesh.

effects, such as van der Waals forces, become important. Without such forces, the drop
would asymptotically approach the wall, but never reach it. The drop is held down against
gravity by the pressure that is created by the lubricating flow of liquid being squeezed out
above the drop. Since interface reconnection occurs over a small part of the flow domain
and a small time period, the precise way in which it occurs is unlikely to have an impact

FIG. 14. Rising drop, 512× 512 mesh.
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FIG. 15. Velocity field for rising drop.

on the overall flow, but the time at which interface reconnection occurs is crucial, since the
flow following interface reconnection is quite different from the flow which precedes it.

Figure 15 shows the development of the velocity field. Initially, the flow consists simply
of two counter-rotating vortices. As time evolves, these vortices divide and a more complex
flow structure develops.

4. CONCLUSION

We have implemented a moving contact line formulation for the VOF-CSS scheme by
suitable reformulations of the PLIC and CSS components. We provide two simple two-
dimensional benchmark problems. The first is the transient motion of a drop given an initial
contact angle and evolving to an equilibrium state with a new contact angle. The second is a
drop falling to the ground under the action of gravity and impacting on it. The performance
of the code is encouraging, and the straightforward generalization to the three-dimensional
case is a promising novel addition to the VOF method.
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